import json
import os
import json5
import urllib.parse
from qwen_agent.agents import Assistant
from qwen_agent.tools.base import BaseTool, register_tool
llm_cfg = {
# Use the model service provided by DashScope:
'model': 'qwen-max',
'model_server': 'dashscope',
# 'api_key': 'YOUR_DASHSCOPE_API_KEY',
# It will use the `DASHSCOPE_API_KEY' environment variable if 'api_key' is not set here.
# Use your own model service compatible with OpenAI API:
# 'model': 'Qwen/Qwen2-72B-Instruct',
# 'model_server': 'http://localhost:8000/v1', # api_base
# 'api_key': 'EMPTY',
# (Optional) LLM hyperparameters for generation:
'generate_cfg': {
'top_p': 0.8
}
}
system = 'According to the user\'s request, you first draw a picture and then automatically run code to download the picture ' + \
'and select an image operation from the given document to process the image'
# Add a custom tool named my_image_gen:
@register_tool('my_image_gen')
class MyImageGen(BaseTool):
description = 'AI painting (image generation) service, input text description, and return the image URL drawn based on text information.'
parameters = [{
'name': 'prompt',
'type': 'string',
'description': 'Detailed description of the desired image content, in English',
'required': True
}]
def call(self, params: str, **kwargs) -> str:
prompt = json5.loads(params)['prompt']
prompt = urllib.parse.quote(prompt)
return json.dumps(
{'image_url': f'https://image.pollinations.ai/prompt/{prompt}'},
ensure_ascii=False)
tools = ['my_image_gen', 'code_interpreter'] # code_interpreter is a built-in tool in Qwen-Agent
bot = Assistant(llm=llm_cfg,
system_message=system,
function_list=tools,
files=[os.path.abspath('doc.pdf')])
messages = []
while True:
query = input('user question: ')
messages.append({'role': 'user', 'content': query})
response = []
for response in bot.run(messages=messages):
print('bot response:', response)
messages.extend(response)